Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0545120200300111626
Journal of Microbiology and Biotechnology
2020 Volume.30 No. 11 p.1626 ~ p.1639
Regulation of Innate Immune Response to Fungal Infection in Caenorhabditis elegans by SHN-1/SHANK
Sun Lingmei

Li Huirong
Zhao Li
Liao Kai
Abstract
In Caenorhabditis elegans, SHN-1 is the homologue of SHANK, a scaffolding protein. In this study, we determined the molecular basis for SHN-1/SHANK in the regulation of innate immune response to fungal infection. Mutation of shn-1 increased the susceptibility to Candida albicans infection and suppressed the innate immune response. After C. albicans infection for 6, 12, or 24 h, both transcriptional expression of shn-1 and SHN-1::GFP expression were increased, implying that the activated SHN-1 may mediate a protection mechanism for C. elegans against the adverse effects from fungal infection. SHN-1 acted in both the neurons and the intestine to regulate the innate immune response to fungal infection. In the neurons, GLR-1, an AMPA ionotropic glutamate receptor, was identified as the downstream target in the regulation of innate immune response to fungal infection. GLR-1 further positively affected the function of SER-7-mediated serotonin signaling and antagonized the function of DAT-1-mediated dopamine signaling in the regulation of innate immune response to fungal infection. Our study suggests the novel function of SHN-1/SHANK in the regulation of innate immune response to fungal infection. Moreover, our results also denote the crucial role of neurotransmitter signals in mediating the function of SHN-1/SHANK in regulating innate immune response to fungal infection.
KEYWORD
SHN-1, innate immunity, neurotransmitter, Candida albicans, Caenorhabditis elegans
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)